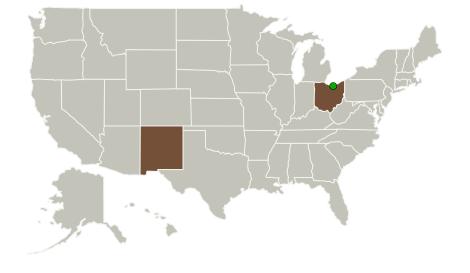
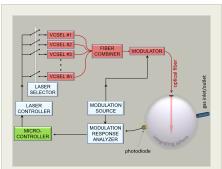
Rugged Multigas Sensor for Planetary Missions, Phase I




Completed Technology Project (2017 - 2017)

Project Introduction

Mesa Photonics proposes an optical gas analyzers suitable for planetary and lunar missions that will be smaller, more rugged, and more reliable than existing technology. These are point sensors for measurements within planetary atmospheres or for analysis of gases collected during lunar activities. Target gases include CH4, CO2, CO, NH3, O2, C2H2, C2H4, H2S, and H2O. The innovation uses optical absorption spectroscopy at near-infrared wavelengths. Sensitivities will range from 2 ppm for H2S (in a 101 kPa mixture) to less than 1 ppb for HF. Instruments will weigh less than 3kg, be under 1 liter in volume, and draw less than 10W. Power consumption could be as low as 3W depending on platform temperature stabilization. The Phase I project will test the new technique by (1)assembling and testing instrumentation electronics, (2) measuring detection sensitivity, precision, drift, linearity and dynamic range using CH4 as a representative gas, (3) develop a numerical model of the technique, and (4) determine the expected physical and performance specifications for instruments that could used on planetary missions and lunar deployment. Based on the most recent decadal survey, possible planetary missions include a dropsonde for studying the atmosphere of Venus, analysis of trace gases in the Martian atmosphere, characterization of atmospheric composition of the moons of Jupiter and Saturn, and a dropsonde into the atmosphere of Uranus.

Primary U.S. Work Locations and Key Partners

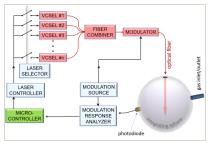
Rugged multigas sensor for planetary missions, Phase I Briefing Chart Image

Table of Contents

Project Introduction	1
Primary U.S. Work Locations	
and Key Partners	1
Images	2
Organizational Responsibility	2
Project Management	2
Technology Maturity (TRL)	2
Technology Areas	3
Target Destinations	3

Small Business Innovation Research/Small Business Tech Transfer

Rugged Multigas Sensor for Planetary Missions, Phase I



Completed Technology Project (2017 - 2017)

Organizations Performing Work	Role	Туре	Location
Mesa Photonics, LLC	Lead Organization	Industry	Santa Fe, New Mexico
Glenn Research Center(GRC)	Supporting Organization	NASA Center	Cleveland, Ohio

Primary U.S. Work Locations	
New Mexico	Ohio

Images

Briefing Chart Image

Rugged multigas sensor for planetary missions, Phase I Briefing Chart Image (https://techport.nasa.gov/imag e/127768)

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Organization:

Mesa Photonics, LLC

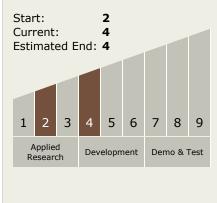
Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Project Management

Program Director:

Jason L Kessler


Program Manager:

Carlos Torrez

Principal Investigator:

David Bomse

Technology Maturity (TRL)

Small Business Innovation Research/Small Business Tech Transfer

Rugged Multigas Sensor for Planetary Missions, Phase I

Completed Technology Project (2017 - 2017)

Technology Areas

Primary:

TX08 Sensors and
 Instruments

 □ TX08.3 In-Situ
 Instruments and Sensors
 □ TX08.3.4 Environment
 Sensors

Target Destinations

The Moon, Mars, Outside the Solar System, The Sun, Earth, Others Inside the Solar System

